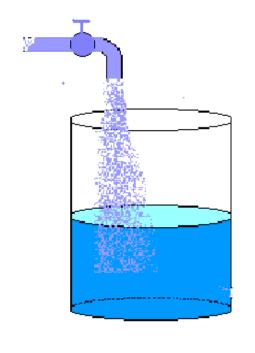
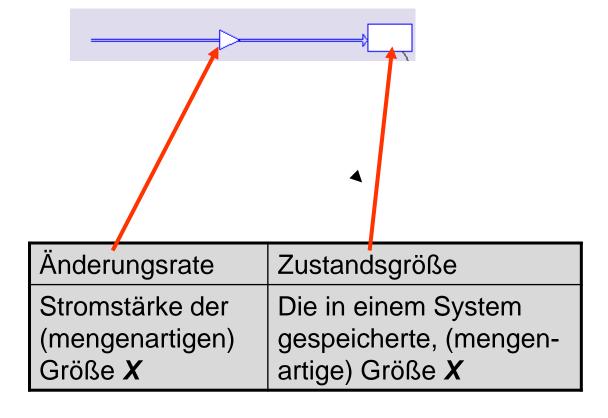
Modelle und Modellbildung im Physikunterricht der Oberstufe Waldfischbach 29., 30.11.2012

Einführung in Modellbildung mit Coach 6

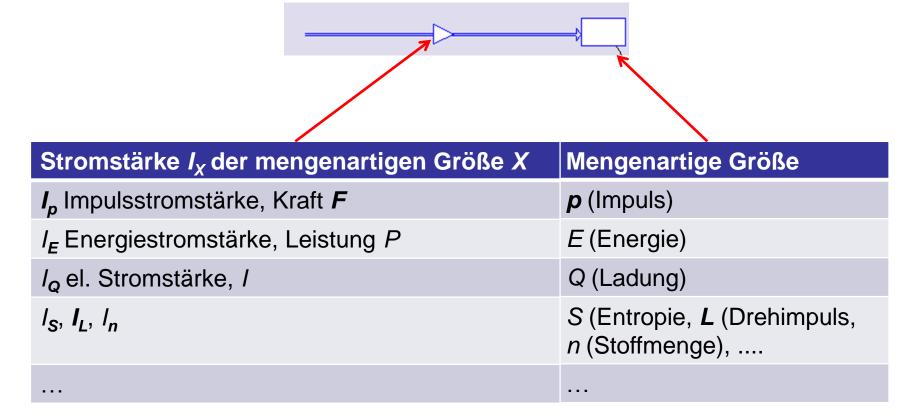
Michael Pohlig - Hans M. Strauch


michael.pohlig@kit.edu - HansMStrauch@t-online.de



Modelle und Modellbildung im Physikunterricht der Oberstufe

Das Modellbildungssystem Coach 6*



^{*} Klett Verlag

Das Modellbildungssystem

Physikalische Interpretation

Das Modellbildungssystem

Was passiert beim Simulieren?

Beim Simulieren mit Modellbildungssystemen werden Schleifen abgearbeitet:

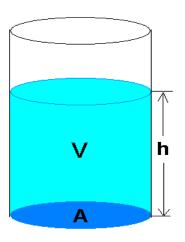
Schleife:

$$x_{alt} := x_{neu}$$

 $x_{neu} = x_{alt} + \ddot{A}ndR$

Ende Schleife

$$x(t + \Delta t) = x(t) + \frac{\Delta x}{\Delta t} \Delta t$$
$$x(t + \Delta t) = x(t) + I_x \Delta t$$


Didaktische Aspekte

- Man wird zum genaueren Nachdenken über das gestellte Problem veranlasst und vertieft damit sein Wissen über Physik
- Man kann die eigenen Konzepte und Formeln anhand bekannter Ergebnisse überprüfen.
- Durch Eingabe von Messwerten kann man berechnete Ergebnisse mit gemessenen vergleichen. Modellieren ersetzt das Experiment nicht, kann es aber sinnvoll ergänzen
- Ein schrittweißer Aufbau komplexer Modelle erhöht das Verständnis und die Akzeptanz.
- Durch das Arbeiten mit den erstellten Modellen (Parametervariation) werden bessere Einsichten in die Zusammenhänge des konkreten Beispiels vermittelt.

Didaktische Aspekte

- Die Übertragung von Modellen auf andere Beispiele unter Ausnutzung von Strukturgleichheiten ist möglich.
- Die Verwendung von Modellbildungssystemen entlastet von mathematischem Aufwand.
- Dadurch werden neue Bereiche zugänglich, die sonst verwehrt bleiben.
- Durch Arbeiten mit fertigen Modellen als Simulation werden experimentell nicht zugängliche Bereiche (Gravitationsfeld und Satelliten, Teilchen in Feldern etc.) zugänglich.
- Man kann die Differentialgleichungen des Modells analytisch (CAS) lösen und erhält damit Terme nicht nur Diagramme.
- Modellbildung mit Animationssoftware und Simulationssoftware (fertige Modelle) nicht vergleichbar.

Wassermodell zur Erklärung

- $p = m \cdot v$; $V = A \cdot h$ (Wasser)
- m = p/v; A = V/h (Fläche)
- v = p/m; h = V/A (Höhe)

für den Unterricht

- Modellbildung ist eine Bereicherung des Physikunterrichts.
- Energie, Energiestromstärke, Impuls und Impulsstromstärke sind die zentralen Größen der Dynamik.
- Die Verwendung von Modellbildungssoftware entlastet von mathematischem Aufwand.

Strukturgleichheiten

Teilgebiet	Extensive Größe	Strom	Intensive Größe	Energie	Energiestrom
E-Lehre	Q	1	φ	E	$P = (\varphi_2 - \varphi_1) \cdot I$
Thermodynamik	S	$I_{\mathbb{S}}$	Т	Ε	$P = (T_2 - T_1) \cdot I_{S}$
Translationsmechanik	р	F	V	Ε	$P = (v_2 - v_1) \cdot F$
Rotationsmechanik	L	М	ω	Ε	$P = (\omega_2 - \omega_4) \cdot M$
Chemie	n	I_n	μ	Ε	$P = (\mu_2 - \mu_1) \cdot I_n$
Gravitation	m	I_m	Ψ	E	$P = (\psi_2 - \psi_1) \cdot I_m$